Novel Gene Signatures for Prostate Cancer Detection: Network Centralitybased Screening with Experimental Validation

Author:

Zhao Anguo1,Zhang Xuefeng1,Hu Guang2,Wei Xuedong1,Huang Yuhua1,Hou Jianquan1,Lin Yuxin12

Affiliation:

1. Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China

2. Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China

Abstract

Background: Prostate cancer (PCa) is a kind of malignant tumor with high incidence among males worldwide. The identification of novel biomarker signatures is, therefore of clinical significance for PCa precision medicine. It has been acknowledged that the breaking of stability and vulnerability in biological network provides important clues for cancer biomarker discovery. Methods: In this study, a bioinformatics model by characterizing the centrality of nodes in PCa-specific protein-protein interaction (PPI) network was proposed and applied to identify novel gene signatures for PCa detection. Compared with traditional methods, this model integrated degree, closeness and betweenness centrality as the criterion for Hub gene prioritization. The identified biomarkers were validated based on receiver-operating characteristic evaluation, qRT-PCR experimental analysis and literature-guided functional survey. Results: Four genes, i.e., MYOF, RBFOX3, OCLN, and CDKN1C, were screened with average AUC ranging from 0.79 to 0.87 in the predicted and validated datasets for PCa diagnosis. Among them, MYOF, RBFOX3, and CDKN1C were observed to be down-regulated whereas OCLN was over-expressed in PCa groups. The in vitro qRT-PCR experiment using cell line samples convinced the potential of identified genes as novel biomarkers for PCa detection. Biological process and pathway enrichment analysis suggested the underlying role of identified biomarkers in mediating PCa-related genes and pathways including TGF-β, Hippo, MAPK signaling during PCa occurrence and progression. Conclusion: Novel gene signatures were screened as candidate biomarkers for PCa detection based on topological characterization of PCa-specific PPI network. More clinical validation using human samples will be performed in future work.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Jiangsu Province

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3