Biomarkers Identification of Hepatocellular Carcinoma Based on Multiomics Data Integration and Graph-embedded Deep Neural Network

Author:

Yan Chaokun12ORCID,Li Mengyuan1ORCID,Suo Zhihao1,Zhang Jun1ORCID,Wang Jianlin12ORCID,Zhang Ge12ORCID,Liang Wenjuan1ORCID,Luo Huimin12ORCID

Affiliation:

1. School of Computer and Information Engineering, Henan University, Kaifeng, China

2. Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China

Abstract

Background: Hepatocellular carcinoma (HCC) is one of the malignancies with high mortality rate, and identify relevant biomarkers of HCC is helpful for early diagnosis and patient care. Though some high-dimensional omic data contains intrinsic biomedical information about HCC, how to integrate analysis them effectively and find promising biomarkers of HCC is still an important and difficult issue. Methods: We present a novel biomarker identification approach, named GEDNN, based on multi-omic data and graph-embedded deep neural network. To achieve a more comprehensive understanding of HCC, we first collected and normalized the three following types of HCC-related data: DNA methylation, copy number variation (CNV), and gene expression. The ANOVA was adopted to filter out redundant genes. Then, we measured the connectivity between gene pairs by Pearson correlation coefficient of gene pairs, and further construct gene graph. Next, graph-embedded feedforward neural network (DFN) and back-propagation of convolutional neural network (CNN) were combined to integratively analyze the three types of omics data and achieve the importance score of gene biomarkers Results: Extensive experimental results showed that the biomarkers screened by the proposed method were effective in classifying and predicting HCC. Furthermore, the gene analysis further showed that the biomarkers screened by our method were strongly associated with the development of HCC. Conclusion: In this paper, we propose the GEDNN method to assess the importance of genes for more accurate identification of cancer biomarkers, which facilitates the effective classification of cancers. The proposed method is applied to multi-omics data of HCC, including RNASeq, DNAMeth and CNV, considering the complementary information between different types of data. We construct a gene graph by Pearson correlation coefficients as additional information for DFN, thus reducing the importance score of redundant genes. In addition, the proposed method also incorporates back-propagation of CNN to further obtain the importance of features.

Funder

National Natural Science Foundation of China

Science and Technology Development Plan Project of Henan Province

China Postdoctoral Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3