A Network-Based Method for the Detection of Cancer Driver Genes in Transcriptional Regulatory Networks Using the Structural Analysis of Weighted Regulatory Interactions

Author:

Teimourpour Babak1,Akhavan-Safar Mostafa21,Nowzari-Dalini Abbas3

Affiliation:

1. Department of Information Technology Engineering, School of Systems and Industrial Engineering, Tarbiat Modares University (TMU), Tehran, Iran

2. Department of Computer and Information Technology Engineering, Payame Noor University (PNU), P.O. Box, 19395-4697, Tehran, Iran

3. Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran

Abstract

Background: Identifying genes that instigate cell anomalies and cause cancer in humans is an important field in oncology research. Abnormalities in these genes are transferred to other genes in the cell, disrupting its normal functionality. Such genes are known as cancer driver genes (CDGs). Various methods have been proposed for predicting CDGs, mostly based on genomic data and computational methods. Some novel bioinformatic approaches have been developed. Objective: In this article, we propose a network-based algorithm, SalsaDriver (Stochastic approach for link-structure analysis for driver detection), which can calculate each gene's receiving and influencing power using the stochastic analysis of regulatory interaction structures in gene regulatory networks. Method: First, regulatory networks related to breast, colon, and lung cancers are constructed using gene expression data and a list of regulatory interactions, the weights of which are then calculated using biological and topological features of the network. After that, the weighted regulatory interactions are used in the structural analysis of interactions, with two separate Markov chains on the bipartite graph taken from the main graph of the gene network and the implementation of the stochastic approach for link-structure analysis. The proposed algorithm categorizes higher-ranked genes as driver genes. Results: The proposed algorithm was compared with 24 other computational and network tools based on the F-measure value and the number of detected CDGs. The results were validated using four databases. The findings of this study show that SalsaDriver outperforms other methods and can identify substantiallyy more driver genes than other methods. Conclusion: The SalsaDriver network-based approach is suitable for predicting CDGs and can be used as a complementary method along with other computational tools.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3