NeuMF: Predicting Anti-cancer Drug Response Through a Neural Matrix Factorization Model

Author:

Zhang Lin12,Liu Hui13,Yu Jian3,Chen Xiangzhi3

Affiliation:

1. Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China

2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Background: Anti-cancer drug response is urgently required for individualized therapy. Measurements with wet experiments are costly and time-consuming. Artificial intelligence-based models are currently available for predicting drug response but still have challenges in prediction accuracy Objective: Construct a model to predict drug response values for unknown cell lines and analyze drug potential association properties in sparse data. Methods: Propose a Neural Matrix Factorization (NeuMF) framework to help predict the unknown responses of cell lines to drugs. The model uses a deep neural network to figure out drug and cell lines' latent variables. In NeuMF, the inputs and the parameters of the multi-layer neural network are simultaneously optimized by gradient descent to minimize the reconstruction errors between the predicted and natural values of the observed entries. Then the unknown entries can be readily recovered by propagating the latent variables to the output layer. Results: Experiments on the Cancer Cell Line Encyclopedia (CCLE) dataset and Genomics of Drug Sensitivity in Cancer (GDSC) dataset compare NeuMF with the other three state-of-the-art methods. NeuMF reduces constructing drug or cell line similarity and mines the response matrix itself for correlations in the network, avoiding the inclusion of redundant noise. NeuMF obtained drug averaged PCC_sr of 0.83 and 0.84 on both datasets. It demonstrates that NeuMF substantially improves the prediction. Some essential parameters in NeuMF, such as the strategy of global effect removal and the scales of the input layer, are also discussed. Finally, case studies have shown that NeuMF can better learn the latent characteristics of drugs, e.g., Irinotecan and Topotecan are found to act on the same pathway TOP1. The conclusions are in line with some existing biological findings. Results: Experiments on the Cancer Cell Line Encyclopedia (CCLE) dataset and Genomics of Drug Sensitivity in Cancer (GDSC) dataset compare NeuMF with the other three state-of-the-art methods. NeuMF reduces constructing drug or cell line similarity and mines the response matrix itself for correlations in the network, avoiding the inclusion of redundant noise. NeuMF obtained drug averaged PCC_sr of 0.83 and 0.84 on both datasets. It demonstrates that NeuMF substantially improves the prediction. Some essential parameters in NeuMF, such as the global effect removal strategy and the input layer scales, are also discussed. Finally, case studies have shown that NeuMF can better learn the latent characteristics of drugs, e.g., Irinotecan and Topotecan are found to act on the same pathway TOP1. The conclusions are in line with some existing biological findings. Conclusion: NeuMF achieves better prediction accuracy than existing models, and its output is biologically interpretable. NeuMF also helps analyze the correlations between drugs.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3