Affiliation:
1. Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming Yunnan 650504, China
Abstract
Background:
RNA-binding protein plays an important role in regulating splicing, RNA
transport, and other post-transcriptional processes, identifying special RNA binding domains, and interacting
with RNA.
Objective:
This paper proposes a deep learning framework, DeepFusion-RBP, composed of three submodels.
A sliding window is used to obtain sub-sequences, local features are obtained, and then the
model is customized for each feature.
Methods:
The main advantage of this research is using the sliding window method to cut the original
sequence. While expanding the data set, this method avoids filling in too much meaningless data. Then,
the model is customized for each feature to accurately perform RNA binding protein classification, with
specific methods such as LSTM, Conv1D, Amino acid embedding, etc.
Results:
To test whether the customized model can improve the final prediction effect, we used different
combinations of sub-models and test sets of different lengths. The prediction ACC, F1-score and MCC
of DeepFusion-RBP are 92.62%, 91.29%, and 84.96%, respectively, with cross-validation. At the same
time, DeepFusion-RBP also showed excellent performance on three independent verification sets.
Conclusion:
The results of 10-fold cross-validation and the independent verification set tests both suggested
that the proposed models for different features and intercepting sub-sequences produce a certain
improvement in the prediction effect of the model. The data supporting the findings of the article are
available at https://github.com/mmwangxu/DeepFusion-RBP-tool.
Funder
Training Plan for Young and Middle-aged Academic Leaders of Yunnan Province, China
Natural Science Foundation of Yunnan Province
National Natural Science Foundation of China
Publisher
Bentham Science Publishers Ltd.
Subject
Computational Mathematics,Genetics,Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献