In-situ Photo-deposition of Nd-modified Hexahydroxy Strontium Stannate Nanorods with Enhanced Photocatalytic Performance

Author:

Sun Zizhan1,Wang Xiaoyu1,Xue Zeyang1,Cai Zhengyu1,Fan Chuangang1,Pei Lizhai1ORCID

Affiliation:

1. School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui, 243002, P. R. China

Abstract

Background:: Metal surface modification of the photocatalysts is effective for enhancing the photocatalytic properties of the semiconductor photocatalysts. Nd can be used as the modified metal for the enhancement of catalytic performance of the strontium tin hydroxide (SrSn(OH)6) nanorods due to expanding the light absorption range and reducing the recombination of the photo-generated electrons and holes. Objective:: The aim of the research is to synthesize Nd-modified SrSn(OH)6 nanorods and investigate the enhanced photocatalytic performance for crystal violet degradation. Methods:: Nd modified SrSn(OH)6 nanorods were prepared via a facile one-step in-situ photodeposition route. The obtained nanorods were analyzed by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, solid diffuse reflectance spectra, photoluminescence spectroscopy, and electrochemical impedance spectroscopy. Results:: Nd attached to the surface of nanorods. The band gap of the Nd-modified SrSn(OH)6 nanorods was reduced due to Nd modification at the surface of nanorods. The Nd-modified SrSn(OH)6 nanorods showed enhanced photocatalytic properties for crystal violet (CV) degradation under ultraviolet (UV) light irradiation than the SrSn(OH)6 nanorods. Nd modified SrSn(OH)6 nanorods have lower charge transfer resistance and more efficient charge separation ability, thus hindering the recombination of the electrons and holes (e−/h+) pairs. Scavenger experiments reported that the holes, superoxide, and hydroxyl radicals are the main reactive species during the photocatalytic reaction. The Ndmodified SrSn(OH)6 nanorods were found to be recoverable and reusable for CV degradation. Conclusion:: The Nd modified SrSn(OH)6 nanorods showed enhanced photocatalytic performance towards crystal violet than un-modified nanorods.

Funder

Natural Science Foundation of Anhui Province China

Publisher

Bentham Science Publishers Ltd.

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3