PAn/Cu Bismuthate Nanoflake Composites with Enhanced Electrochemical Performance for TA

Author:

Wang Z.1ORCID,Chen H.J.1ORCID,Lin F.F.1ORCID,Yan L.1ORCID,Zhang Y.2ORCID,Pei L.Z.1ORCID,Fan C.G.1ORCID

Affiliation:

1. Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, China

2. Key Laboratory for Power Metallurgy Technology and Advanced Materials of Xiamen, Xiamen University of Technology, Xiamen, Fujian 361024, China

Abstract

Background: Measuring tartaric acid in liquid food, such as fruits or fruit products is of great importance for assessing the quality of the food. Objective: The aim of the research is to obtain polyaniline/Cu bismuthate nanoflake composites by an in-situ polymerization route for the electrochemical detection of tartaric acid. Methods: Polyaniline/Cu bismuthate nanoflake composites were prepared by in-situ aniline polymerizing route in aqueous solution. The obtained products were characterized by X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM) and high-resolution TEM (HRTEM), respectively. The electrochemical performance for tartaric acid detection has been investigated by cyclic voltammetry method using polyaniline/Cu bismuthate nanoflake composites modified glassy carbon electrode. Results: The nanocomposites comprise of tetragonal CuBi2O4 phase. Polyaniline particles with the size of less than 100 nm attach to the surface of the nanoflakes. A pair of quasi-reversible cyclic voltammetry peaks are located at -0.01 V and +0.04 V, respectively at the 20wt.% polyaniline/Cu bismuthate nanoflake composites modified glassy carbon electrode. The limit of detection is 0.58 µM with the linear range of 0.001-2 mM. The linear range increases from 0.005-2 mM to 0.001-2 mM and limit of detection decreases from 2.3 µM to 0.43 µM with increasing the polyaniline content from 10wt.% to 40wt.%. Conclusion: Comparing with the Cu bismuthate nanoflakes modified glassy carbon electrode, polyaniline/ Cu bismuthate nanoflake composites modified glassy carbon electrode shows enhanced electrochemical performance for tartaric acid detection.

Funder

Student Innovation and Entrepreneurship Training Program of P.R. China

Natural Science Foundation of the Education Bureau of Anhui Province of China

Natural Science Foundation of Fujian Province of China

Publisher

Bentham Science Publishers Ltd.

Subject

Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3