Analysis of Electrocatalytic Performance of Nanostructured MoS2 in Hydrogen Evolution Reaction

Author:

Sunitha A. P.1,Nayana K.12

Affiliation:

1. Department of Physics, Govt. Victoria College, Palakkad, Affiliated to University of Calicut, Kerala-678001, India

2. Department of Physics, N. S. S. College, Ottapalam, Affiliated to University of Calicut, Kerala-679103, India

Abstract

Abstract: Recently, renewable and non-conventional energy production methods have been getting widespread attention. Fast research progress in establishing green energy indicates the relevance of carbon-free power production. Chemical energy stored in hydrogen molecules is considered green energy to substitute conventional energy sources. It is possible to produce hydrogen without carbon emission by water electrolysis. The action of appropriate catalysts can increase the rate of water electrolysis. Among various non-harmful and cost-effective catalysts, MoS2 nanostructures emerge as electrocatalysts in water electrolysis. This paper reviews the electrocatalytic properties of nanostructures of MoS2 by analyzing different characterization techniques used in water electrolysis, such as linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy and chronopotentiometry. This article explores the relationship between electrocatalytic characteristics and the reaction mechanism. How the reaction kinetics of electrocatalyst varies with respect to the structural changes of MoS2 nanostructures, pH of surrounding medium and longevity of catalyst are analysed here. It is found that the 1T phase of MoS2 has faster catalytic activity than the 2H phase. Similarly, among the various shapes and sizes of MoS2 nanostructures, quantum dot or monolayer structures of MoS2 and doped version of MoS2 have better catalytic activity. Acidic electrolyte shows better kinetics for releasing hydrogen than other pH conditions. Longevity, catalytic behaviour over a wide pH range, cost-effective synthesis methods and non-toxicity of MoS2 catalysts suggest its future scope as a better catalyst for commercial purposes. Electrocatalytic activity, stability, future scope and challenges of various MoS2 nanostructures are reviewed here.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3