Femtomolar Dengue Virus Type-2 DNA Detection in Back-gated Silicon Nanowire Field-effect Transistor Biosensor

Author:

Abidin Wan Amirah Basyarah Zainol1ORCID,Nor Mohammad Nuzaihan Md1ORCID,Arshad Mohd Khairuddin Md1ORCID,Fathil Mohamad Faris Mohamad1ORCID,Parmin Nor Azizah1ORCID,Sisin Noor Azrina Haji Talik2ORCID,Ibau Conlathan1ORCID,Azlan Aidil Shazereen1

Affiliation:

1. Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis,Malaysia

2. Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur,Malaysia

Abstract

Background: Dengue is known as the most severe arboviral infection in the world spread by Aedes aegypti. However, conventional and laboratory-based enzyme-linked immunosorbent assays (ELISA) are the current approaches in detecting dengue virus (DENV), requiring skilled and well-trained personnel to operate. Therefore, the ultrasensitive and label-free technique of the Silicon Nanowire (SiNW) biosensor was chosen for rapid detection of DENV. Methods: In this study, a SiNW field-effect transistor (FET) biosensor integrated with a back-gate of the low-doped p-type Silicon-on-insulator (SOI) wafer was fabricated through conventional photolithography and Inductively Coupled Plasma – Reactive Ion Etching (ICP-RIE) for Dengue Virus type-2 (DENV-2) DNA detection. The morphological characteristics of back-gated SiNW-FET were examined using a field-emission scanning electron microscope supported by the elemental analysis via energy-dispersive X-ray spectroscopy. Results and Discussion: A complementary (target) single-stranded deoxyribonucleic acid (ssDNA) was recognized when the target DNA was hybridized with the probe DNA attached to SiNW surfaces. Based on the slope of the linear regression curve, the back-gated SiNW-FET biosensor demonstrated the sensitivity of 3.3 nAM-1 with a detection limit of 10 fM. Furthermore, the drain and back-gate voltages were also found to influence the SiNW conductance changed. Conclusion: Thus, the results obtained suggest that the back-gated SiNW-FET shows good stability in both biosensing applications and medical diagnosis throughout the conventional photolithography method.

Funder

Fundamental Research Grant Scheme (FRGS) Ministry of Education Malaysia and Universiti Malaysia Perlis

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3