Recent Advancements in Light-responsive Supercapacitors

Author:

Shah Syed Shaheen1ORCID,Aziz Md. Abdul23ORCID

Affiliation:

1. Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan

2. Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran 31261, Saudi Arabia

3. K.A.CARE Energy Research and Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Abstract

Abstract: With so many of our daily activities related to electricity, from telecommunication to laptops and computers, the use of electric energy has skyrocketed in today's technology-based world. Energy output must rise to meet rising energy demand. Still, as fossil fuels are running out, we must turn to more renewable energy sources, particularly solar energy, which can be harnessed and converted to electricity by solar-powered cells. The issues, however, are brought about by the sunlight's unpredictable energy output. The energy produced by solar cells should therefore be stored using energy storage technologies. This notion led to the development of the photo-supercapacitor, a device that combines a solar cell with a supercapacitor to store the energy generated by the solar cells. However, recently researchers developed light-responsive materials for supercapacitors that could be used directly as electrode materials and deposited on various transparent and conductive substrates. Such light-responsive supercapacitors could be operated directly by shining solar light without using any solar cell. A light-responsive supercapacitor's efficiency is primarily influenced by the active materials used in its electrode fabrication. The main components of high-energy conversion, which improves a light-responsive supercapacitor's performance and shelf life, are photoactive materials, counter electrodes, compatible electrolytes, and transparent substrate performances. Furthermore, light-responsive supercapacitors are cutting-edge and promising energy storage devices that can self-charge under light illumination by converting light to electrical energy and storing it for later use. They are considered a novel approach to energy issues in electrical transportation, electronic equipment, and on-chip energy storage devices. Thus, this review paper opens up an avenue for the direct utilization of photoactive nanomaterials for electrochemical energy storage and demonstrates the substantial potential for the fabrication of advanced light-responsive supercapacitors. This study also covers the fundamentals of how this exciting field works, the historical trajectory of how far it has come, and the promising prospects for its future.

Funder

Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, Saudi Arabia

King Abdullah City for Atomic and Renewable Energy

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3