Spiro-Lactams as Novel Antimicrobial Agents

Author:

Alves Américo J.S.1ORCID,Alves Nuno G.1ORCID,Caratão Cátia C.1ORCID,Esteves Margarida I.M.1ORCID,Fontinha Diana2ORCID,Bártolo Inês3ORCID,Soares Maria I.L.1ORCID,Lopes Susana M.M.1ORCID,Prudêncio Miguel2ORCID,Taveira Nuno3ORCID,Pinho e Melo Teresa M.V.D.1ORCID

Affiliation:

1. CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal

2. Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal

3. Instituto de Investigacao do Medicamento (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal

Abstract

Introduction: Structural modulation of previously identified lead spiro-β-lactams with antimicrobial activity was carried out. Objective: The main objective of this work was to synthesize and evaluate the biological activity of novel spiro-lactams based on previously identified lead compounds with antimicrobial activity. Methods: The target chiral spiro-γ-lactams were synthesized through 1,3-dipolar cycloaddition reaction of a diazo-γ-lactam with electron-deficient dipolarophiles. In vitro activity against HIV and Plasmodium of a wide range of spiro-β-lactams and spiro-γ-lactams was evaluated. Among these compounds, one derivative with good anti-HIV activity and two with promising antiplasmodial activity (IC50 < 3.5 µM) were identified. Results: A novel synthetic route to chiral spiro-γ-lactams has been established. The studied β- and γ- lactams were not cytotoxic, and three compounds with promising antimicrobial activity were identified, whose structural modulation may lead to new and more potent drugs. Conclusion: The designed structural modulation of biologically active spiro-β-lactams involved the replacement of the four-membered β-lactam ring by a five-membered γ-lactam ring. Although conformational and superimposition computational studies revealed no significant differences between β- and γ- lactam pharmacophoric features, the studied structural modulation did not lead to compounds with a similar biological profile. The observed results suggest that the β-lactamic core is a requirement for the activity against both HIV and Plasmodium.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3