Application of Computational Techniques to Unravel Structure-Function Relationship and their Role in Therapeutic Development

Author:

Yadav Tara Chand1,Srivastava Amit Kumar1,Dey Arpita1,Kumar Naresh2,Raghuwanshi Navdeep1,Pruthi Vikas1

Affiliation:

1. Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India

2. Discipline of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Indore-453552, India

Abstract

Application of computational tools and techniques has emerged as an invincible instrument to unravel the structure-function relationship and offered better mechanistic insights in the designing and development of new drugs along with the treatment regime. The use of in silico tools equipped modern chemist with armamentarium of extensive methods to meticulously comprehend the structural tenacity of receptor-ligand interactions and their dynamics. In silico methods offers a striking property of being less resource intensive and economically viable as compared to experimental evaluation. These techniques have proved their mettle in the designing of potential lead compounds to combat life-threatening diseases such as AIDS, cancer, tuberculosis, malaria, etc. In the present scenario, computer-aided drug designing has ascertained an essential and indispensable gizmo in therapeutic development. This review will present a brief outline of computational methods used at different facets of drug designing and its latest advancements. The aim of this review article is to briefly highlight the methodologies and techniques used in structure-based/ ligand-based drug designing viz., molecular docking, pharmacophore modeling, density functional theory, protein-hydration and molecular dynamics simulation which helps in better understanding of macromolecular events and complexities.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3