PTML Modeling for Alzheimer’s Disease: Design and Prediction of Virtual Multi-Target Inhibitors of GSK3B, HDAC1, and HDAC6

Author:

Kleandrova Valeria V.1,Speck-Planche Alejandro2

Affiliation:

1. Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe Shosse 11, 125080, Moscow, Russian Federation

2. Programa Institucional de Fomento a la Investigacion, Desarrollo e Innovacion, Universidad Tecnologica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquin, Santiago, Chile

Abstract

Background: Alzheimer’s disease is characterized by a progressive pattern of cognitive and functional impairment, which ultimately leads to death. Computational approaches have played an important role in the context of drug discovery for anti-Alzheimer's therapies. However, most of the computational models reported to date have been focused on only one protein associated with Alzheimer's, while relying on small datasets of structurally related molecules. Objective: We introduce the first model combining perturbation theory and machine learning based on artificial neural networks (PTML-ANN) for simultaneous prediction and design of inhibitors of three Alzheimer’s disease-related proteins, namely glycogen synthase kinase 3 beta (GSK3B), histone deacetylase 1 (HDAC1), and histone deacetylase 6 (HDAC6). Methods: The PTML-ANN model was obtained from a dataset retrieved from ChEMBL, and it relied on a classification approach to predict chemicals as active or inactive. Results: The PTML-ANN model displayed sensitivity and specificity higher than 85% in both training and test sets. The physicochemical and structural interpretation of the molecular descriptors in the model permitted the direct extraction of fragments suggested to favorably contribute to enhancing the multitarget inhibitory activity. Based on this information, we assembled ten molecules from several fragments with positive contributions. Seven of these molecules were predicted as triple target inhibitors while the remaining three were predicted as dual-target inhibitors. The estimated physicochemical properties of the designed molecules complied with Lipinski’s rule of five and its variants. Conclusion: This work opens new horizons toward the design of multi-target inhibitors for anti- Alzheimer's therapies.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3