Studying the Adsorption Process of Cadmium Ions by Fe3O4/Lmethionine/ graphene Oxide and Graphene Aerogel Nanocomposites from Aqueous Environments

Author:

Abbasi Nooshin1,Azar Parviz Aberoomand1,Tehrani Mohammad Saber1,Aliabad Javad Mokhtari1

Affiliation:

1. Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran

Abstract

Background: In recent years, graphene oxide (GO) and its nanocomposites have shown effective performance in wastewater treatment. Moreover, graphene aerogels (GAs) have excellent properties, such as high surface area, high porosity, low density, high electrical conductivity, and good mechanical properties, due to the combination of three-dimensional porous structures and excellent properties of graphene. Methods: In this study, synthesis of Fe3O4/L-methionine and graphene oxide and graphene aerogel nanocomposites (Fe3O4/L-Met, Fe3O4/L-Met/GO, Fe3O4/L-Met/GA) was performed. Then, the synthesized nanocomposites were confirmed by FT-IR, SEM and BET analyses. The adsorption capacity of cadmium ion by methionine nanocomposites and the effect of various experimental parameters, such as contact time, initial metal ion concentration, and initial pH, on the adsorption process were investigated. Results: The results showed that Fe3O4/L-Met at pH 7 was suitable for Cd (II) removal with 90% removal efficiency. In addition, adsorption capacity experiments at a constant concentration of 50 ppm Cd2+ showed that more than 50% of Cd2+ ions could be adsorbed by Fe3O4/L-Met and reach equilibrium within 2 hours. Conclusion: Thus, Fe3O4/L-Met/GA showed high adsorption capacity towards Cd2+ (212.31 mg/g), which was significantly higher than Fe3O4/L-Met (201.23 mg/g). Finally, adsorption kinetics and isotherm studies were investigated. Adsorption data showed excellent fit with quasi-second order models (R2> 0.99) and Freundlich isotherm models.

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3