Highly Sensitive Chitosan and ZrO2 Nanoparticles-Based Electrochemical Sensor for 8-Hydroxy-2’-deoxyguanosine Determination

Author:

Rong Shengzhong1,Pan Deng2,Li Xuehui3,Gao Mucong4,Yu Hongwei5,Jiang Jinghui6,Zhang Ze5,Zeng Dongdong7,Pan Hongzhi7,Chang Dong5

Affiliation:

1. Public Health School, Mudanjiang Medical College, Mudanjiang, Heilongjiang, 157011, China

2. Medical School, Southeast University, Nanjing 210009, China

3. College of Public Administration, Nanjing Agricultural University Nanjing 210095, China

4. Public health school, Harbin Medical University, Harbin, Heilongjiang, 150081, China

5. Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China

6. Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China

7. Cooperation Study Center, School of Medicine and Technology, Shanghai University of Medical & Health Sciences, Shanghai, 201318, China

Abstract

Background: 8-Hydroxy-2’-deoxyguanosine (8-OHdG) has been regarded as a typical stable biomarker of DNA oxidative damage, and its level is one of the criteria for early diagnosis of various diseases. Considering the significance of 8-OhdG, various analytical techniques have been used for assaying 8-OHdG but all of them suffer from basic limitations like highly expensive instrumentation, large amount of sample requirement, complicated sample pre-treatment, tedious and time-consuming procedures etc. However, electroanalytical sensors provide a faster, easy and sensitive means of analyzing. Methods: The chitosan (CS) film provided the high electrode activity and stability which is required for detecting 8-OHdG though direct electrochemical oxidation. Zirconia was employed because it has some unique properties, such as high redox activity and selectivity etc. High-performance composite was easily detected by differential pulse voltammetry at a working voltage of 0. 51 V (vs. Ag/AgCl). A rapid and sensitive electrochemical sensor based on CS and metal oxide nanocrystalline for the determination of 8-OHdG was established. Results: Under optimized experimental conditions, the peak currents of differential pulse voltammetry increased as the concentrations of 8-OHdG increased from 10 to 200 ng·mL-1. The detection limit was 3.67 ng·mL-1 which was calculated by the S/N ratio of 3. The recoveries of the real spiked samples are in the range between 93.2 to 105.3%. Conclusion: The electrochemical sensor for direct 8-OHdG determination using a new CS/zirconia composite for GCE modification was developed and showed excellent reproducibility, stability and sensitivity for the specific determination of 8-OHdG in real urine specimen.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3