Immunoregulatory Effects of the Active Form of Vitamin D (Calcitriol), Individually and in Combination with Curcumin, on Peripheral Blood Mononuclear Cells (PBMCs) of Multiple Sclerosis (MS) Patients

Author:

Fasihi Mahdieh1,Samimi-Badabi Mahsa1,Robat-Jazi Behrouz1,Bitarafan Sama2,Moghadasi Abdorreza Naser3,Mansouri Fatemeh1,Yekaninejad Mir Saeed4,Izad Maryam5,Saboor-Yaraghi Ali Akbar1

Affiliation:

1. Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

2. Iranian Center of Neurological Research, Department of Neurology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran

3. Department of Neurology and MS Research Center, Neuroscience Institute, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran

4. Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

5. Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Objectives: Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease affecting the central nervous system. Immune cell subsets, notably T helper (Th) 17 and Th1, exert important roles in MS pathogenesis. Whereas, Treg cells modulate the disease process. Calcitriol, the active form of vitamin D, and curcumin, a bioactive compound derived from turmeric, play immunomodulatory effects relevant to autoimmune disorders, including MS. The objective of this study is to investigate the effects of calcitriol and Curcumin on Peripheral blood mononuclear cells (PBMCs) of individuals with MS. Methods: PBMCs from twenty MS patients were isolated, cultured, and exposed to 0.004 μg/mL of calcitriol and 10 μg/mL of curcumin. The cells underwent treatment with singular or combined doses of these components to assess potential cumulative or synergistic immunomod-ulatory effects. Following treatment, the expression levels of genes and the cellular population of Treg, Th1 and Th17 were evaluated using Real-time PCR and flow cytometry. Results: Treatment with curcumin and calcitriol led to a significant reduction in the expression levels of inflammatory cytokines and transcription factors related to Th1 and Th17 cells, including IFN-γ, T-bet, IL-17, and RORC. Furthermore, the frequency of these cells decreased following treatment. Additionally, curcumin and calcitriol treatment resulted in a significant upregulation of the FOXP3 gene expression and an increase in the frequency of Treg cells. Conclusion: This study demonstrates that curcumin and calcitriol can effectively modulate the inflammatory processes intrinsic to MS by mitigating the expression of inflammatory cytokines by Th1 and Th17 cells while concurrently enhancing the regulatory role of Treg cells. Moreover, the combined treatment of curcumin and calcitriol did not yield superior outcomes compared to single-dosing strategies.

Funder

Tehran University of Medical Sciences, Tehran, Iran

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3