Identification of Novel EGFR Inhibitors for the Targeted Therapy of Colorectal Cancer Using Pharmacophore Modelling, Docking, Molecular Dynamic Simulation and Biological Activity Prediction

Author:

Krishnan K. Amrutha1ORCID,George Valavi Sudha1ORCID,Joy Amitha2ORCID

Affiliation:

1. Department of Applied Science and Humanities, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University, Kodakara, Thrissur, Kerala, India

2. Department of Biotechnology, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University, Kodakara, Thrissur, Kerala, India

Abstract

Background: Colorectal cancer (CRC) is considered the second deadliest cancer in the world. One of the reasons for the occurrence of this cancer is the deregulation of the Epidermal Growth Factor Receptor (EGFR), which plays a critical role in regulating cell division, persistence, differentiation, and migration. The overexpression of the EGFR protein leads to its dysregulation and causes CRC. Objective: Hence, this work aims to identify and validate novel EGFR inhibitors for the treatment of colorectal cancer employing various computer aided techniques such as pharmacophore modeling, docking, molecular dynamic simulation and Quantitative Structure-Activity Relationship (QSAR) analysis. Methods: In this work, a shared-featured ligand-based pharmacophore model was generated using the known inhibitors of EGFR. The best model was validated and screened against ZincPharmer and Maybridge databases, and 143 hits were obtained. Pharmacokinetic and toxicological properties of these hits were studied, and the acceptable ligands were docked against EGFR. The best five protein-ligand complexes with binding energy less than -5 kcal/mol were selected. The molecular dynamic simulation studies of these complexes were conducted for 100 nanoseconds (ns), and the results were analyzed. The biological activity of this ligand was calculated using QSAR analysis. Results: The best complex with Root Mean Square Deviation (RMSD) 3.429 Å and Radius of Gyration (RoG) 20.181 Å was selected. The Root Mean Square Fluctuations (RMSF) results were also found to be satisfactory. The biological activity of this ligand was found to be 1.38 μM. Conclusion: This work hereby proposes the ligand 2-((1,6-dimethyl-4-oxo-1,4-dihydropyridin-3-yl)oxy)-N- (1H-indol-4-yl)acetamide as a potential EGFR inhibitor for the treatment of colorectal cancer. The wet lab analysis must be conducted, however, to confirm this hypothesis.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3