A Cross-sectional Comparative Analysis of Eleven Population Pharmacokinetic Models for Docetaxel in Chinese Breast Cancer Patients

Author:

Wang Genzhu1,Sun Qiang1,Li Xiaojing1,Mei Shenghui2,Li Shihui1,Li Zhongdong1

Affiliation:

1. Electric Power Teaching Hospital, Capital Medical University, Beijing 100073, China

2. Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China

Abstract

Objective: Various population pharmacokinetic (PPK) models have been established to help determine the appropriate dosage of docetaxel, however, no clear consensus on optimal dosing has been achieved. The purpose of this study is to perform an external evaluation of published models in order to test their predictive performance, and to find an appropriate PPK model for Chinese breast cancer patients. Methods: A systematic literature search of docetaxel PPK models was performed using PubMed, Web of Science, China National Knowledge Infrastructure, and WanFang databases. The predictive performance of eleven identified models was evaluated using prediction-based and simulation-based diagnostics on an independent dataset (112 docetaxel concentrations from 56 breast cancer patients). The -2×log (likelihood) and Akaike information criterion were also calculated to evaluate model fit. Results: The median prediction error of eight of the eleven models was less than 10%. The model fitting results showed that the three-compartment model of Bruno et al. had the best prediction performance and that the three compartment model of Wang et al. had the best simulation effect. Furthermore, although the covariates that significantly affect PK parameters were different between them, seven models demonstrated that docetaxel PK parameters were influenced by liver function. Conclusions: Three compartment PPK models may be predictive of optimal docetaxel dosage for Chinese breast cancer patients. However, for patients with impaired liver function, the choice of which model to use to predict the blood concentration of docetaxel still requires great care.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3