Assessment of the Anti-Adipogenic Effect of Crateva religiosa Bark Extract for Molecular Regulation of Adipogenesis: In Silico and In vitro Approaches for Management of Hyperlipidemia Through the 3T3-L1 Cell Line

Author:

Singh Monika1,Sachdeva Monika2,Kumar Nitin3

Affiliation:

1. Department of Pharmacology, I.T.S. College of Pharmacy, Ghaziabad, U.P., Affiliated with Dr. A.P.J. Abdul Kalam Technical University, Lucknow

2. Department of Pharmacy, R.K.G.I.T., Ghaziabad U.P., Affiliated with Dr. A.P.J. Abdul Kalam Technical University, Lucknow

3. Department of Pharmacy, Meerut Institute of Technology, Meerut, Affiliated with Dr. A.P.J. Abdul Kalam Technical University, Lucknow

Abstract

Aim: This study aimed to determine the phytoconstituents of Crateva religiosa bark (CRB) and evaluate the hypolipidemic effect of bioactive CRB extract by preventing adipocyte differentiation and lipogenesis. Background: After performing the preliminary phytochemicals screening, the antioxidant activity of CRB extracts was determined through a DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay. Ethyl acetate extract (CREAE) and ethanol extract (CRETE) of CRB were selected for chromatographic evaluation. objective: Antihyperlipidemic potential was analyzed by molecular docking through PKCMS software platform. Method: The antihyperlipidemic potential was analyzed by molecular docking through the PKCMS software platform. Further, a 3T3-L1 cell line study via In vitro sulforhodamine B assay and western blotting was performed to confirm the prevention of adipocyte differentiation and lipogenesis Results: The total phenolic contents in CREAE and CRETE were estimated as 29.47 and 81.19 μg/mg equivalent to gallic acid, respectively. The total flavonoid content was found to be 8.78 and 49.08 μg/mg, equivalent to quercetin in CREAE and CRETE, respectively. CRETE exhibited greater scavenging activity with the IC50 value of 61.05 μg/ mL. GC-MS analysis confirmed the presence of three bioactive molecules, stigmasterol, gamma sitosterol, and lupeol, in CRETE. Molecular docking studies predicted that the bioactive molecules interact with HMG-CoA reductase, PPARγ, and CCAAT/EBP, which are responsible for lipid metabolism. In vitro, Sulforhodamine B assays revealed that CRETE dose-dependently reduced cell differentiation and viability. Cellular staining using ‘Oil Red O’ revealed a decreased lipid content in the CRETE-treated cell lines. CRETE significantly inhibited the induction of PPARγ and CCAAT/EBP expression, as determined through protein expression via western blotting. Conclusion: The influence of CRETE on lipid metabolism in 3T3-L1 cells is potentially suggesting a new approach to managing hyperlipidemia.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3