Psoriasis Lesion Detection Using Hybrid Seeker Optimization-based Image Clustering

Author:

Dash Manoranjan1,Londhe Narendra Digambar1ORCID,Ghosh Subhojit1ORCID,Raj Ritesh1ORCID,Sonawane Rajendra2

Affiliation:

1. Electrical Engineering Department, National Institute of Technology, Raipur 492010, India

2. Psoriasis Clinic and Research Centre, Psoriatreat, Pune, Maharashtra 411004, India

Abstract

Background: In recent years, there has been a massive increase in the number of people suffering from psoriasis. For proper psoriasis diagnosis, psoriasis lesion segmentation is a prerequisite for quantifying the severity of this disease. However, segmentation of psoriatic lesions cannot be evaluated just by visual inspection as they exhibit inter and intra variability among the severity classes. Most of the approaches currently pursued by dermatologists are subjective in nature. The existing conventional clustering algorithm for objective segmentation of psoriasis lesion suffers from limitations of premature local convergence. Objective: An alternative method for psoriatic lesion segmentation with objective analysis is sought in the present work. The present work aims at obtaining optimal lesion segmentation by adopting an evolutionary optimization technique that possesses a higher probability of global convergence for psoriasis lesion segmentation. Method: A hybrid evolutionary optimization technique based on the combination of two swarm intelligence algorithms, namely Artificial Bee Colony and Seeker Optimization algorithm, has been proposed. The initial population for the hybrid technique is obtained from the two conventional local- based approaches, i.e., Fuzzy C-means and K-means clustering algorithms. Results: The initial population selection from the convergence of classical techniques reduces the effect of population dynamics on the final solution and hence yields precise lesion segmentation with a Jaccard Index of 0.91 from 720 psoriasis images. Conclusion: The performance comparison reflects the superior performance of the proposed algorithm over other swarm intelligence and conventional clustering algorithms.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer-Aided Diagnosis Based on DenseNet201 Architecture for Psoriasis Classification;Future Research Directions in Computational Intelligence;2023-06-23

2. Improving Performance of Psoriasis Lesion Segmentation Using Attention-UNet with EfficientNet Encoder;2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS);2022-12-02

3. Editorial: The Emerging Role of Artificial Intelligence in Dermatology;Frontiers in Medicine;2021-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3