Progress and Challenges in Physiological Artifacts’ Detection in Electroencephalographic Readings

Author:

Bisht Amandeep1ORCID,Singh Preeti1,Kaur Chamandeep1,Agarwal Sunil1,Ajmani Manisha2

Affiliation:

1. Department of Electronics and Communications, UIET, Sector 25, Panjab University, Chandigarh-160014, India

2. The University of Winnipeg, Canada

Abstract

Background: Electroencephalographic (EEG) recordings are used to trace neural activity within the cortex to study brain functioning over time. Introduction: During data acquisition, the unequivocal way to reduce artifact is to avoid artifact stimulating events. Though there are certain artifacts that make this task challenging due to their association with the internal human mechanism, in the human-computer interface, these physiological artifacts are of great assistance and act as a command signal for controlling a device or an application (communication). That is why pre-processing of electroencephalographic readings has been a progressive area of exploration, as none of the published work can be viewed as a benchmark for constructive artifact handling. Method: This review offers a comprehensive insight into state of the art physiological artifact removal techniques listed so far. The study commences from the single-stage traditional techniques to the multistage techniques, examining the pros and cons of each discussed technique. Also, this review paper gives a general idea of various datasets available and briefs the topical trend in EEG signal processing. Result: Comparing the state of the art techniques with hybrid ones on the basis of performance and computational complexity, it has been observed that the single-channel techniques save computational time but lack in effective artifact removal especially physiological artifacts. On the other hand, hybrid techniques merge the essential characteristics resulting in increased performance, but time consumption and complexity remain an issue. Conclusion: Considering the high probability of the presence of multiple artifacts in EEG channels, a trade-off between performance, time and computational complexity is the only key for effective processing of artifacts in the time ahead. This paper is anticipated to facilitate upcoming researchers in enriching the contemporary artifact handling techniques to mitigate the expert’s burden.

Publisher

Bentham Science Publishers Ltd.

Subject

Radiology Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of the variables describing brain signals on the performance of the Naive Bayesian Classifier;2022 Progress in Applied Electrical Engineering (PAEE);2022-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3