Electromotive Force of Spontaneously Polarized Semiconductors

Author:

Kharlamov Vladimir F.1ORCID

Affiliation:

1. Department of Physics, Orel State University, Orel, 302026, Russia

Abstract

Background: Spontaneously polarized finely dispersed semiconductors can be sources of direct electric current, similar to thermoelectric converters. Their power is low due to the low electrical conductivity of the powders. Objective: Theoretical description of the electromotive force of a spontaneously polarized homogeneous semiconductor film with ionized donor centers uniformly distributed over its two surfaces and free electrons in the volume. Establishment of technical characteristics and competitive advantages of using a film as a current source converts the received energy (heat or light) into the work of an electric field. Methods: The theory of semiconductors and the laws of thermodynamics are used. Results: Analytical expressions are obtained that describe the electronic processes in a metal-semiconductor-metal three-layer film and the technical characteristics of its use as a current source. Estimates are given on the example of a silicon film with arsenic-doped surfaces. Conclusion: The universal principles for creating homogeneous solids of macroscopic dimensions are substantiated, with the efficiency of converting heat into the work of an electric field, which is significantly (by an order of magnitude) higher than the efficiency of materials used to create thermo-EMF sources. The heat absorbed by the metal-semiconductor-metal three-layer film serves as an energy source for a direct current in a closed circuit generated by this structure with an efficiency of 100%. The power of the current source 10 - 105 W/m depends on the received heat flow. A semiconductor film with a built-in electric field is an analogue of a p - n junction and does not have its drawbacks.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3