Dental Pulp from Human Exfoliated Deciduous Teeth-derived Stromal Cells Demonstrated Neuronal Potential: In Vivo and In Vitro Studies

Author:

Hochuli Agner H.D.1ORCID,Senegaglia Alexandra C.1ORCID,Selenko Ana H.1ORCID,Fracaro Letícia1ORCID,Brofman Paulo R.S.1ORCID

Affiliation:

1. Core for Cell Technology, School of Medicine, Pontifícia Universidade Catolica do Parana, Curitiba, Brazil

Abstract

Background: Mesenchymal Stromal Cells (MSC) have the potential for self-renewal and differentiation in different tissues, characteristics that encourage their use in regenerative medicine. Dental tissue MSCs are easy to collect, have the same embryonic origin as neurons and have neuronal markers that allow their use in treating neurodegenerative diseases. Human Exfoliated Deciduous teeth (SHED)-derived stromal cells are considered immature and present positive expression of pluripotency and neuronal markers. Studies have shown that after the induction of neuronal differentiation in vitro, SHED increased the expression of neuronal markers, such as βIIItubulin, nestin, GFAP, NeuN, and NFM, demonstrating the potential use of these cells in preclinical studies. The results of this review reflect the consensus that in diseases such as spinal cord injury, cerebral ischaemia, and Alzheimer’s and Parkinson’s disease, SHED could function in the suppression of the inflammatory response, neuroprotection, and neuronal replacement. Conclusion: For these cells to be used in large-scale clinical trials, standardization of the isolation techniques and theneuronal induction medium are necessary. The potential of SHED to induce neuronal differentiation is evident, demonstrating that this resource is promising and shows great potential for use in future preclinical and clinical trials of neurodegenerative diseases.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3