The lncRNA Tincr Regulates the Abnormal Differentiation of Intestinal Epithelial Stem Cells in the Diabetic State Via the miR-668-3p/Klf3 Axis

Author:

Shan Ti-Dong1,Sun Li-Bin2,Ding Ai-Ping1,Han Yue3,Song Ming-Quan1

Affiliation:

1. Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China

2. Department of Oncology and The Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, P.R. China

3. Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China

Abstract

Background: Diabetes mellitus (DM) is among the most common chronic diseases, and diabetic enteropathy (DE), which is a complication caused by DM, is a serious health condition. Long noncoding RNAs (lncRNAs) are regulators of DE progression. Objective: However, the mechanisms of action of multiple lncRNAs involved in DE remain poorly understood. Methods: Reverse transcription-quantitative PCR (RT–qPCR) and in situ hybridization were used to analyze terminal differentiation-induced lncRNA (Tincr) expression in intestinal epithelial cells (IECs) in the DM state. Microarray analysis, bioinformatics analysis, and luciferase reporter assays were used to identify the genes targeted by Tincr. The role of miR-668-3p was then explored by up- and down-regulating its expression in vitro and in vivo. Results: In this study, we observed that the level of lncRNA Tincr was increased in IECs in the DM state. More importantly, Tincr was associated with abnormal intestinal epithelial stem cell (IESC) differentiation in DM. Our mechanistic study demonstrated that Tincr is a major marker of Lgr5+ stem cells in DM. In addition, we investigated whether Tincr directly targets miR-668-3p and whether miR-668-3p targets Klf3. Our findings showed that Tincr sponged miR-668-3p, which attenuated abnormal IESC differentiation in DM by regulating Klf3 expression. Conclusion: This study presents evidence of an essential role for Tincr in IESC differentiation in DM.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3