The Formation of Manganous Dithionate in the Manganese Oxide Flue Gas Desulfurization

Author:

Pu Pengyan1,Yang Lin1ORCID,Yao Lu1ORCID,Jiang Xia1,Jiang Wenju1ORCID

Affiliation:

1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China

Abstract

Background & Objective: The Manganous Dithionate (MnS2O6, MD) was formed during the flue gas desulfurization process over manganese ore slurry, which impeded the following valuable using of the desulfurized lixivium. In this study, the MD formation and restraint in the desulfurization process using manganese was carefully investigated. Methods & Results: Different type of manganese oxides/carbonate was used for the flue gas desulfurization, and the MD formation with the process was detected to obtain the basic information of the MD formation and restraint. The MD was directly formed by the uncompleted oxidation of SO2 with MnO2. The increased MD formation by Mn2O3, Mn3O4 and MnCO3 was due to their influence on the pH of slurry. Processability study showed that an increase in the acidity of slurry, the gaseous oxygen content and reaction temperature could inhibit the MD formation effectively. The optimum operating conditions to restrain the MD formation were temperature higher than 60°C, 10% or more oxygen and slurry pH lower than 3. The formed MD content was different with the different manganese compounds, which cloud be controlled by the ore-proportioning in industrial application. Conclusion: Using anolyte to prepare the manganese slurry for desulfurization could perform a good MD formation restraint, which provided valuable technical support for the cleaner production of electrolytic manganese industry.

Funder

National Key R&D Program of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3