A Magnesium-based Nanobiocomposite Processed by a Novel Technique Combining High Shear Solidification and Hot Extrusion

Author:

Razavi Mehdi1,Huang Yan1

Affiliation:

1. BCAST, Institute of Materials and Manufacturing, Brunel University London, Uxbridge, London UB8 3PH, United Kingdom

Abstract

<P>Background: Most of the currently available Mg-based biomaterials corrode too fast in the physiological environment, causing many problems including hydrogen bubble release and premature mechanical failure. It is commonly recognized that high biodegradation rate is the major factor limiting their clinical applications. </P><P> Objective: The present research aims to develop a new magnesium (Mg)-based biomaterial with a controlled biodegradation rate. </P><P> Methods: A magnesium-hydroxyapatite (Mg-1.61Zn-0.18Mn-0.5Ca/1HA) nanocomposite was developed by a novel technique which combines high shear solidification and hot extrusion, followed by heat treatment. The microstructure and biodegradation rate of the nanocomposite in HBSS Hanks’ Balanced Salt Solution were assessed. Biodegradation behaviour was studied using electrochemical corrosion and immersion test. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the surface microstructure, biodegradation morphology and to analyse the biodegradation products. Few patents were also cited in the article. </P><P> Results: Under the optimized procedure of high shear solidification, extrusion and heat treatment at 400°C, the Mg-1.61Zn-0.18Mn-0.5Ca/1HA exhibited a satisfactory biodegradation rate of 0.12±0.04 mm/year. </P><P> Conclusion: This technology shows a potential of breakthrough innovation in the manufacturing of Mg-based biomaterials with a decreased biodegradation rate.</P>

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3