Modeling, Optimization, and Simulation of Nanomaterials-Based Organic Thin Film Transistor for Future Use in pH Sensing

Author:

Moorthy Vijai Meyyappan1ORCID,Mohan Viranjay Srivastava1

Affiliation:

1. Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban, 4041, South Africa

Abstract

Introduction: Applications of Organic Thin Film Transistor (OTFT) range from flexible screens to disposable sensors, making them a prominent research issue in recent decades. A very accurate and exact pH sensing determination, including biosensors, is essential for these sensors. Methods: In this present research work, authors have proposed a nanomaterial-based OTFT for future pH monitoring and other biosensing applications. This work presents a numerical model of a pH sensor based on Carbon Nano Tubes (CNTs). Sensing in harsh conditions may be possible with the CNTs due to their strong chemical and thermal resilience. This research work describes the numerical modeling of Bottom-Gate Bottom-Contact (BGBC) OTFTs with a Semiconducting Single-Walled Carbon Nanotube (s-SWCNT) and C60 fullerene blended active layer. Results: The design methodology of organic nanomaterial-based OTFTs has been presented with various parameter extraction precisely its electrical characteristics, modeled by adjusting the parameters of the basic semiconductor technology. For an active layer thickness of 200 nm, the drain current of the highest-performing s-SWCNT:C60 -based OTFT structure was around 4.25 A. This demonstrates that it is better than previously reported patents and published works. Conclusion: This allows for an accurate representation of the device's electrical characteristics. Using Gold (Ag) Source/Drain (S/D) and back-gate electrodes as the medium for sensing, it has been realized how the thickness of the active layer impacts the performance of an OTFT for pH sensor applications.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3