Folate-Targeted Polyacrylamide/Punicic Acid Nanomicelles for Flutamide Delivery in Prostate Cancer: Characterization, In Vitro Biological Evaluation, and its DFT Study

Author:

Mirsafaei Razieh1,Varshosaz Jaleh1ORCID,Mirsattari Seyed N.2

Affiliation:

1. Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran

2. Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O Box 86145-311, Shahreza, Isfahan, Iran

Abstract

Background: Targeted nanocarriers can be used for reducing the unwanted side effects of drugs in non-target organs. Punicic acid, the polyunsaturated fatty acid of pomegranate seed oil, has been shown to possess anti-cancer effects on prostate cancer and the study also covers recent patents related to prostate cancer. The objective of the current study was to synthesize a co-polymeric micelle for delivery of Flutamide (FL) in prostate cancer using Polyacrylamide (PAM) and Punicic Acid (PA). Methods: The co-polymer of PAM and PA was synthesized and conjugated to folic acid. The successful conjugation was studied computationally by the density functional theory method and was confirmed by the FT- IR and 1HNMR. The folate-PAMPA micelles produced by the film casting method were characterized physically. FL was loaded in the nanomicelles and its release test was done at different pH. The Critical Micelle Concentration (CMC) was measured by pyrene as a fluorescent probe. Their cellular uptake and cytotoxicity were evaluated on PC3 prostate cancer cells. The molecular geometry and vibrational frequencies of two different possibilities for conjugation were calculated using the B3LYP/6-31G basis set. Results: The CMC of the micelles and their particle size were 79.05 μg/ml and 88 nm, respectively. The resulting nanocarriers of FL showed significantly more cytotoxic effects than the free drug at a concentration of 25 μM. The calculated results showed that the optimized geometries could well reproduce the structural parameters, and the theoretical vibrational frequencies were in good agreement with the experimental values. Conclusion: Folate-PAMPA nanomicelles may be promising for the enhancement of FL cytotoxicity and seem to potentiate the effect of chemotherapeutic agents used in prostate cancer treatment.

Funder

National Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,Condensed Matter Physics,General Materials Science

Reference51 articles.

1. Gittes R.F.; Carcinoma of the prostate. N Engl J Med 1991,324(4),236-245

2. Greenlee R.T.; Murray T.; Bolden S.; Wingo P.A.; Cancer statistics, 2000. CA Cancer J Clin 2000,50(1),7-33

3. Tachibana K.; Sato H.; Ohta M.; Imidazolidine derivatives. WO Patent 111012 2004

4. Andrew HD, James MCT, Godfrey F. Imidazolidine derivatives. CA Patent 853218A, 1970.

5. Furr B, Cockshott I. Pharmaceutical combination of an antiandrogen and tamoxifen for providing an anti-androgenic effect and aromatase inhibition. US Patent 20030158160A1, 2003.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3