Methods to Improve the Stability of Nucleic Acid-Based Nanomaterials

Author:

Xie Xueping1,Ma Wenjuan2,Zhan Yuxi3,Zhang Qifeng1,Wang Chaowei1,Zhu Huiyong1

Affiliation:

1. Department of Stomatology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China

2. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China

3. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China

Abstract

Abstract: Nucleic acid strands can be synthesized into various nucleic acid-based nanomaterials (NANs) through strict base pairing. The self-assembled NANs are programmable, intelligent, biocompatible, non-immunogenic, and non-cytotoxic. With the rapid development of nanotechnology, the application of NANs in the biomedical fields, such as drug delivery and biological sensing, has attracted wide attention. However, the stability of NANs is often affected by the cation concentrations, enzymatic degradation, and organic solvents. This susceptibility to degradation is one of the most important factors that have restricted the application of NANs. NANs can be denatured or degraded under conditions of low cation concentrations, enzymatic presence, and organic solvents. To deal with this issue, a lot of methods have been attempted to improve the stability of NANs, including artificial nucleic acids, modification with specific groups, encapsulation with protective structures, etc. In this review, we summarized the relevant methods to have a deeper understanding of the stability of NANs.

Funder

Youth Talent Training Program of the First Affiliated Hospital, Zhejiang University School of Medicine

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3