Physiologically-based Pharmacokinetic (PBPK) Modelling of Transporter Mediated Drug Absorption, Clearance and Drug-drug Interactions

Author:

Taskar Kunal S.1,Harada Isobel1,Alluri Ravindra V.2

Affiliation:

1. DMPK, IVIVT, GlaxoSmithKline R&D, Stevenage, United Kingdom

2. Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom

Abstract

Membrane transporters play an important role in intestinal absorption, distribution and clearance of drugs. Additionally transporters along with enzymes regulate tissue exposures (e.g. liver, kidney and brain), which are important for safety and efficacy considerations. Early identification of transporters involved guides generation of in vitro and in vivo data needed to gain mechanistic understanding on the role of transporters in organ clearance, tissue exposures and enables development of physiological-based pharmacokinetic (PBPK) models. A lot of progress has been made in developing several in vitro assay systems and mechanistic in silico models to determine kinetic parameters for transporters, which are incorporated into PBPK models. Although, intrinsic clearance and inhibition data from in vitro systems generally tend to underpredict in vivo clearance and magnitude of drug-drug interactions (DDIs), empirical scaling factors derived from a sizable dataset are often used to offset underpredictions. PBPK models are increasing used to predict the impact of transporters on intestinal absorption, clearance, victim and perpetrator DDIs prior to first in human clinical trials. The models are often refined when clinical data is available and are used to predict pharmacokinetics in untested scenarios such as the impact of polymorphisms, ontogeny, ethnicity, disease states and DDIs with other perpetrator drugs. The aim of this review is to provide an overview of (i) regulatory requirements around transporters, (ii) in vitro systems and their limitations in predicting transporter mediated drug disposition and DDIs, (iii) PBPK modelling tactics and case studies used for internal decision making and/or for regulatory submissions.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3