Cyclophilin D-mediated Mitochondrial Permeability Transition Regulates Mitochondrial Function

Author:

Zhou Shaoyun1,Yu Qinwei1,Zhang Luyong1,Jiang Zhenzhou12

Affiliation:

1. New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China

2. Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China

Abstract

Background: Mitochondria are multifunctional organelles, which participate in biochemical processes. Mitochondria act as primary energy producers and biosynthetic centers of cells, which are involved in oxidative stress responses and cell signaling transduction. Among numerous potential mechanisms of mitochondrial dysfunction, the opening of the mitochondrial permeability transition pore (mPTP) is a major determinant of mitochondrial dysfunction to induce cellular damage or death. A plenty of studies have provided evidence that the abnormal opening of mPTP induces the loss of mitochondrial membrane potential, the impairment calcium homeostasis and the decrease of ATP production. Cyclophilin D (CypD), localized in the mitochondrial transition pore, is a mitochondrial chaperone that has been regarded as a prominent mediator of mPTP. Methods: This review describes the relationship between CypD, mPTP, and CypD-mPTP inhibitors through systematic investigation of recent relevant literature. Results: Here, we have highlighted that inhibiting the activity of CypD protects models of some diseases, including ischaemia/reperfusion injury (IRI), neurodegenerative disorders and so on. Knockdown studies have demonstrated that CypD possibly is mediated by its peptidyl-prolyl cis-trans isomerase activity, while the primary targets of CypD remain obscure. The target of CypD-mPTP inhibitor can alleviate mPTP opening-induced cell death. The present review is focused on the role of CypD as a prominent mediator of the mPTP, further providing insight into the physiological function of mPTP and its regulation by CypD. Conclusion: Blocking the opening of mPTP by inhibiting CypD might be a new promising approach for suppressing cell death, which will suggest novel therapeutic approaches for mitochondria-related diseases.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3