Risk Prediction Models and Novel Prognostic Factors for Heart Failure with Preserved Ejection Fraction: A Systematic and Comprehensive Review

Author:

Lin Shanshan12ORCID,Yang Zhihua2,Liu Yangxi12,Bi Yingfei1,Liu Yu1,Zhang Zeyu12,Zhang Xuan12,Jia Zhuangzhuang1,Wang Xianliang1,Mao Jingyuan1

Affiliation:

1. Department of Cardiovascular, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, No. 88, Changling Road, Xiqing District, Tianjin 300381, China

2. Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Tuanpo New Town, Jinghai District, Tianjin 301617, China

Abstract

Background: Patients with heart failure with preserved ejection fraction (HFpEF) have large individual differences, unclear risk stratification, and imperfect treatment plans. Risk prediction models are helpful for the dynamic assessment of patients' prognostic risk and early intensive therapy of high-risk patients. The purpose of this study is to systematically summarize the existing risk prediction models and novel prognostic factors for HFpEF, to provide a reference for the construction of convenient and efficient HFpEF risk prediction models. Methods: Studies on risk prediction models and prognostic factors for HFpEF were systematically searched in relevant databases including PubMed and Embase. The retrieval time was from inception to February 1, 2023. The Quality in Prognosis Studies (QUIPS) tool was used to assess the risk of bias in included studies. The predictive value of risk prediction models for end outcomes was evaluated by sensitivity, specificity, the area under the curve, C-statistic, C-index, etc. In the literature screening process, potential novel prognostic factors with high value were explored. Results: A total of 21 eligible HFpEF risk prediction models and 22 relevant studies were included. Except for 2 studies with a high risk of bias and 2 studies with a moderate risk of bias, other studies that proposed risk prediction models had a low risk of bias overall. Potential novel prognostic factors for HFpEF were classified and described in terms of demographic characteristics (age, sex, and race), lifestyle (physical activity, body mass index, weight change, and smoking history), laboratory tests (biomarkers), physical inspection (blood pressure, electrocardiogram, imaging examination), and comorbidities. Conclusion: It is of great significance to explore the potential novel prognostic factors of HFpEF and build a more convenient and efficient risk prediction model for improving the overall prognosis of patients. This review can provide a substantial reference for further research.

Funder

Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine

National Administration of Traditional Chinese Medicine: 2019 Project of Building Evidence Based Practice Capacity for TCM

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3