Utilizing ICG Spectroscopical Properties for Real-Time Nanoparticle Release Quantification In vitro and In vivo in Imaging Setups

Author:

Peñate-Medina Tuula1ORCID,Kraas Eike1,Luo Kunliang2ORCID,Humbert Jana1ORCID,Zhu Hanwen2ORCID,Mertens Fabian3ORCID,Gerle Mirko2,Rohwedder Arndt1,Damoah Christabel1,Will Olga1,Acil Yahya2,Kairemo Kalevi4,Wiltfang Jörg2,Glüer Claus-C.1,Scherließ Regina5,Sebens Susanne6ORCID,Peñate-Medina Oula6ORCID

Affiliation:

1. Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany

2. Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitatsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universitat zu Kiel, Germany

3. Christian-Albrechts-Universität Kiel, Department of Pharmaceutics and Biopharmaceutics, Grasweg 9a D-24118 Kiel, Germany

4. Department of Nuclear Medicine - The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States

5. Christian-Albrechts-Universitat Kiel, Department of Pharmaceutics and Biopharmaceutics, Grasweg 9a D-24118 Kiel, Germany

6. Institut für Experimentelle Tumorforschung (IET), Arnold-Heller-Str. 3, Building U3024105, Kiel, Germany

Abstract

Background: Nanoparticle imaging and tracking the release of the loaded material from the nanoparticle system have attracted significant attention in recent years. If the release of the loaded molecules could be monitored reliably in vivo, it would speed up the development of drug delivery systems remarkably. Methods: Here, we test a system that uses indocyanine green (ICG) as a fluorescent agent for studying release kinetics in vitro and in vivo from the lipid iron nanoparticle delivery system. The ICG spectral properties like its concentration dependence, sensitivity and the fluctuation of the absorption and emission wavelengths can be utilized for gathering information about the change of the ICG surrounding. Results: We have found that the absorption, fluorescence, and photoacoustic spectra of ICG in lipid iron nanoparticles differ from the spectra of ICG in pure water and plasma. We followed the ICG containing liposomal nanoparticle uptake into squamous carcinoma cells (SCC) by fluorescence microscopy and the in vivo uptake into SCC tumors in an orthotopic xenograft nude mouse model under a surgical microscope. Conclusion: Absorption and emission properties of ICG in the different solvent environment, like in plasma and human serum albumin, differ from those in aqueous solution. Photoacoustic spectral imaging confirmed a peak shift towards longer wavelengths and an intensity increase of ICG when bound to the lipids. The SCC cells showed that the ICG containing liposomes bind to the cell surface but are not internalized in the SCC-9 cells after 60 minutes of incubation. We also showed here that ICG containing liposomal nanoparticles can be traced under a surgical camera in vivo in orthotopic SCC xenografts in mice.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3