Crucial Structural Understanding for Selective HDAC8 Inhibition: Common Pharmacophores, Molecular Docking, Molecular Dynamics, and Zinc Binder Analysis of selective HDAC8 inhibitors

Author:

Sarkar Kakali1,Debnath Sudhan2ORCID,Sen Debanjan3,Kar Supratik4,Sil Samir Kumar1

Affiliation:

1. Department of Human Physiology, Tripura University, Suryamaninagar, Agartala, 799022, India

2. Department of Chemistry, Netaji Subhash Mahavidyalaya, Gomati, Tripura, 799114, India

3. BCDA College of Pharmacy & Technology, Jessore Road South, Hridaypur, Kolkata, West Bengal, 700127, India

4. Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA

Abstract

Background: Overexpression of HDAC8 was observed in various cancers and inhibition of HDAC8 has emerged as a promising therapeutic approach in recent decades. Objective: This review aims to facilitate the discovery of novel selective HDAC8 inhibitors by analyzing the structural scaffolds of 66 known selective HDAC8 inhibitors, along with their IC50 values against HDAC8 and other HDACs. Methods: The inhibitors were clustered based on structural symmetry, and common pharmacophores for each cluster were identified using Phase. Molecular docking with all HDACs was performed to determine binding affinity and crucial interacting residues for HDAC8 inhibition. Representative inhibitors from each cluster were subjected to molecular dynamics simulation to analyze RMSD, RMSF, active site amino acid residues, and crucial interacting residues responsible for HDAC8 inhibition. The study reviewed the active site amino acid information, active site cavities of all HDACs, and the basic structure of Zn2+ binding groups. Results: Common pharmacophores identified included AADHR_1, AADDR_1, ADDR_1, ADHHR_1, and AADRR_1. Molecular docking analysis revealed crucial interacting residues: HIS- 142, GLY-151, HIS-143, PHE-152, PHE-20 in the main pocket, and ARG-37, TYR-100, TYR-111, TYR-306 in the secondary pocket. The RMSD of protein and RMSF of active site amino acid residues for stable protein-ligand complexes were less than 2.4 Å and 1.0 Å, respectively, as identified from MD trajectories. The range of Molecular Mechanics Generalized Born Surface Area (MMGBSA) ΔG predicted from MD trajectories was between -15.8379 Å and -61.5017 Å kcal/mol. Conclusion: These findings may expedite the rapid discovery of selective HDAC8 inhibitors subject to experimental evaluation.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3