Exploring Thiophene Derivatives: Synthesis Strategies and Biological Significance

Author:

Mishra Isha1ORCID,Sharma Vikram1,Kumar Nitin2ORCID,Krishna Gaurav3ORCID,Sethi Vandana Arora4ORCID,Mittal Ravi1ORCID,Dhakad Prashant K.5,Mishra Raghav6ORCID

Affiliation:

1. Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh 201310, India

2. Saraswathi College of Pharmacy, Anwarpur, Pilkhuwa, India

3. GLA University, NH-2 Highway, Mathura, Uttar Pradesh 281406, India

4. Lloyd Institute of Management and Technology, Knowledge Park II, Greater Noida, Uttar Pradesh 201306, India

5. Suresh Gyan Vihar University, Gyan Vihar Marg Jagatpura, Jaipur, Rajasthan 302017, India

6. Lloyd School of Pharmacy, Knowledge Park II, Greater Noida, Uttar Pradesh 201306, India

Abstract

Objectives: Thiophene is one of the most important heterocyclic scaffolds with notable pharmacological properties. Thiophene and its derivatives are of particular interest among sulphurcontaining heterocycles because of their similarities to numerous natural and synthetic compounds with identified potential. The purpose of this study is to extensively analyse the synthetic pathways adopted for synthesising thiophene derivatives and investigate their various biological functions. Methods: A comprehensive review of the existing literature was conducted to collect data pertaining to the methods that are employed for the synthesis of thiophene derivatives. A comprehensive search was carried out through relevant databases, including work published in 2024. A variety of synthesis procedures were identified and arranged, encompassing both traditional approaches like the Gewald reaction and contemporary ones like microwave-assisted synthesis and green synthesis. In addition, a comprehensive compilation of in vitro and in vivo studies was conducted to investigate the biological effects of 50 distinct thiophene derivatives. The primary focus of the studies was on various activities such as anti-cancer, anti-inflammatory, antiprotozoal, antibacterial, antioxidant, and antiviral functions. Results: Diverse methodologies have been employed in the synthesis of thiophene derivatives, encompassing both conventional and modern methods. Furthermore, the biological potential of thiophene derivatives was investigated, demonstrating a broad range of actions. Key structural elements necessary for biological activity were clarified by investigations of the structure-activity relationship. Conclusion: The biological potential and flexible synthesis pathways of thiophene derivatives make them attractive candidates for use in medicinal and pharmaceutical chemistry. Understanding the different synthesis methods and biological actions of thiophene derivatives may assist rational design and create novel treatments for a variety of conditions. The potential for these compounds to be further explored and optimised is considerable for the next drug development initiatives.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3