A Video-based Automated Tracking and Analysis System of Plaque Burden in Carotid Artery using Deep Learning: A Comparison with Senior Sonographers

Author:

Gao Wenjing1ORCID,Liu Mengmeng1,Xu Jinfeng1,Hong Shaofu1,Chen Jiayi2,Cui Chen2,Shi Siyuan2,Dong Yinghui1,Song Di1,Dong Fajin1

Affiliation:

1. Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China

2. Department of Artificial Intelligence, 1Illuminate, LLC, Shenzhen, Guangdong 518000, China

Abstract

Background and Objective: The incidence of stroke is rising, and it is the second major cause of mortality and the third leading cause of disability around the globe. The goal of this study was to rapidly and accurately identify carotid plaques and automatically quantify plaque burden using our automated tracking and segmentation US-video system. Methods: We collected 88 common carotid artery transection videos (11048 frames) with a history of atherosclerosis or risk factors for atherosclerosis, which were randomly divided into training, test, and validation sets using a 6:3:1 ratio. We first trained different segmentation models to segment the carotid intima and adventitia, and calculate the maximum plaque burden automatically. Finally, we statistically analyzed the plaque burden calculated automatically by the best model and the results of manual labeling by senior sonographers. Results: Of the three Artificial Intelligence (AI) models, the Robust Video Matting (RVM) segmentation model's carotid intima and adventitia Dice Coefficients (DC) were the highest, reaching 0.93 and 0.95, respectively. Moreover, the RVM model has shown the strongest correlation coefficient (0.61±0.28) with senior sonographers, and the diagnostic effectiveness between the RVM model and experts was comparable with paired-t test and Bland-Altman analysis [P= 0.632 and ICC 0.01 (95% CI: -0.24~0.27), respectively]. Conclusion: Our findings have indicated that the RVM model can be used in ultrasound carotid video. The RVM model can automatically segment and quantify atherosclerotic plaque burden at the same diagnostic level as senior sonographers. The application of AI to carotid videos offers more precise and effective methods to evaluate carotid atherosclerosis in clinical practice.

Funder

Clinical Scientist Training Program of Shenzhen People’s Hospital

National Key Research and Development Program of China

Science and Technology Program for Social Development of Heyuan

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3