Effect of Filler Material Type on Dynamic Behaviour of Composite Beams; an Experimental Study

Author:

Naik Charanaraja1,Samal Prasanta Kumar1,Hulugappa B.1,Suresha B.1,Jamadar Imran M.1,Malik Pramod Kumar1

Affiliation:

1. Department of Mechanical Engineering, The National Institute of Engineering, Mysuru, Karnataka, India

Abstract

The composite materials find various applications such as in turbine blades, helicopter blades, airplane wings, medical instruments, sports equipment, etc. They are subjected to a variety of dynamic excitations. The resonance condition is desirable for some applications such as vibration actuators, and musical instruments. And due to resonance, catastrophic failure may occur for most of the applications. Therefore, a study of dynamic behavior plays an important role in the design of materials either to avoid or to enforce resonance conditions.This work aims at the experimental investigation of vibration characteristics of composite beams. In this work, composite beams were made of glass fiber and epoxy resin with varying filler materials and their percentage. Three filler materials, viz. Calcium Carbonate (CaCO3), Nano-Clay, and Silicon Carbide (SiC) were considered for the study. The National Instruments Data Acquisition system (NI-DAQ) with a triaxial accelerometer was used to acquire the vibration data. The natural frequencies of the beams were determined from the frequency domain data and damping ratios of the beams were determined from time-domain data. Effects of filler material type on natural frequencies and damping ratios were studied. According to the research, the damping ratio values drop in the order of CaCO3, Nano-Clay, and SiC while the natural frequency values decrease in the order of Nano-Clay, CaCO3 and SiC.

Publisher

BENTHAM SCIENCE PUBLISHERS

Reference18 articles.

1. Singiresu S.; Mechanical Vibrations. Fifth Edition, PEARSON publication

2. William T.; Theory of Vibrations with Applications. Fifth Edition PEARSON publications

3. Autar K.; Kaw, “Mechanics of composite materials” 2005

4. Kemparaju H.R.; Prasanta Kumar Samal, “Detailed Numerical Study of the Free Vibration Analysis of Beams” 2017,39-47

5. Kemparaju H.R.; Samal P.K.; Experimental Investigations on Free Vibration of Plates. J Test Eval 2019,47(4),20170569

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3