SGPocket: A New Graph Convolutional Neural Network for Ligand-protein Binding Site Prediction

Author:

Crampon Kevin123ORCID,Bourrasset Cedric1,Baud Stephanie2ORCID,Steffenel Luiz Angelo3ORCID

Affiliation:

1. Eviden, 38130 Echirolles, France

2. UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne-Ardenne, 51687 Reims, France

3. LICIIS, Université de Reims Champagne-Ardenne, 51687 Reims, France

Abstract

Background: Drug research is a long process, taking more than 10 years and requiring considerable financial resources. Therefore, researchers and industrials aim to reduce time and cost. Thus, they use computational simulations like molecular docking to explore huge databases of compounds and extract the most promising ones for further tests. Structure-based molecular docking is a complex process mixing surface exploration and energy computation to find the minimal free energy of binding corresponding to the best interaction location. Objective: Our work is developed in the ligand-protein context, where ligands are small compounds like drugs. In most cases, no information is known about where on the protein surface the ligand will bind. Thus, the whole protein surface must be explored, which takes a huge amount of time. Methods: We have developed SGPocket (meaning Spherical Graph Pocket), a binding site prediction method. Our method allows us to reduce the explored protein surface using deep learning without any information about a ligand. SGPocket uses the spherical graph convolutional operator working on a spherical relative positioning of amino acids in the protein. Then, a final step of clustering extracts the binding sites. Results: Tested and compared (with well-known binding site prediction methods) on a hand-made dataset, our method performed well and can reduce the docking computing time. Conclusion: Thus, SGPocket allows the reduction of the exploration surface in the molecular docking process by restricting the simulation only to the site(s) predicted to be interesting.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3