Identification and Characterization of PrognosticMacrophage Subpopulations for HumanEsophagealCarcinoma

Author:

Li Penghui1,Gao Xiaohui1,Huang Di2,Gu Xinyu1

Affiliation:

1. Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China

2. Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China

Abstract

Aims: The aim of the present study was to investigate the relationship between the cellular ecosystem and the progression of esophageal carcinoma (ESCA) based on the evolution of macrophages and to analyze the potential of using macrophages as a new therapeutic approach in ESCA treatment. Background: Macrophage-based immunotherapy could be used for treating ESCA patients, but its clinical application is limited by the intra-tumor heterogeneity of macrophages. Objective: The objective of this study was to analyze the diversity, differentiation trajectory, and intercellular communication of macrophages in ESCA and its prognostic significance. Methods: Single-cell RNA sequencing (scRNA-seq) data in the GSE154763 dataset were downloaded from Gene Expression Omnibus (GEO) to identify cell clusters and annotate cell types using the Seurat R package. The scRNA-seq profiles of macrophages were extracted, and cluster analysis was performed to identify macrophage subsets. The differentiation trajectories of macrophage subgroups were visualized employing Monocle2. Finally, ligand-receptor pairs and communication intensity among the classified subgroups were analyzed using CellChat. Results: A total of 8 cell types were identified between ESCA tissues and paracancer tissues. The most abundant macrophages in ESCA tissues were further divided into 5 cell clusters. Compared with the normal tissues, the proportion of HSPA6+ macrophages in ESCA tissues increased the most, and the number of ligand-receptor pairs that mediated the communication of HSPA6+ macrophages with mast cells and monocytes also increased significantly. More importantly, a high proportion of HSPA6+ macrophages was inversely correlated with the survival outcomes for ESCA patients. Conclusions: This study analyzed the diversity, distribution and differentiation trajectory of macrophages in ESCA tissues at single-cell level and classified a prognostic macrophage subtype (HSPA6+ macrophages) of ESCA, providing a theoretical basis for macrophage-targeted therapy in ESCA.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3