Autophagy-related ncRNAs: Regulatory Roles and Potential Therapeutic Effects in Digestive System Neoplasms

Author:

Wei Liushan1,Wu Shijie1,Lei Xiaoyong12,Yang Xiaoyan12

Affiliation:

1. School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan421001, P.R. China

2. The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan421001, P.R. China

Abstract

Abstract: Among all cancers in the world, the incidence rate of digestive system neoplasms accounts for about 25%, while the mortality rate accounts for about 35%. Difficulty in detecting early digestive system cancers and its poor prognosis are the two main reasons for the high mortality rate. Understanding of the basic cellular processes is of significance and autophagy is one of these processes. Considering the importance of autophagy in pathological state functions, the mechanism of autophagy was initially carried out. In this paper, we will review the molecular mechanisms and biological functions of autophagy-associated ncRNAs in different types of digestive system cancers. Autophagy is a process that supports nutrient cycling and metabolic adaptation accomplished through multi-step lysosomal degradation. It has been suggested that autophagy has a dual role in cancer, which limits tumorigenesis in some stages but promotes tumor progression in others. NcRNAs are also shown to modulate cellular autophagy and thus affect the development of digestive system neoplasms. More and more evidence suggests that the regulation of autophagy by ncRNAs plays a complex role in cancer initiation, progression, metastasis, recurrence, and treatment resistance, which might make ncRNAs therapeutic targets for digestive system neoplasms. While miRNAs participate mainly in post-transcriptional regulation, lncRNAs, and circRNAs usually serve as molecular sponges that have more diverse regulatory functions.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3