Combining Network Pharmacology, Molecular Docking and Preliminary Experiments to Explore the Mechanism of Action of FZKA Formula on Non-small Cell Lung Cancer

Author:

Liu Zhuixing1,Zhang Jie1,Liu Jinpeng1,Guo Lihong1,Chen Guangwei2,Fang Yu3,Yang Yang4

Affiliation:

1. Department of Oncology, Xi 'an International Medical Center Hospital, Xi’an, Shaanxi, 710000, China

2. Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 12000, China

3. Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China

4. Department of Radiotherapy & Oncology, Xi 'an International Medical Center Hospital, Xi’an, Shaanxi, 710000, China

Abstract

Background: Clinically, Fuzhengkangai formulation (FZKA) has been proven to have significant therapeutic effects on non-small lung cancer (NSCLC), although the mechanism is unknown. We aimed to explore the potential mechanism of FZKA in the treatment of NSCLC in this study. Methods: We obtained the active components and targets of FZKA by TCMSP. The target genes of NSCLC were searched from OMIM, GEO (GSE18842), and GeneCards database. Cytoscape (3.7.2) software was used to construct a “drug-compound-cross-target interaction” interaction network, and the STING database was used to analyze previous cross-target interactions. Meanwhile, the results were visualized and processed by performing GO enrichment analysis and KEGG signaling pathway enrichment analysis at the target site. The core targets were docked with active components through AutoDockTools-1.5.6 software. Finally, we used cellular experiments to validate the bioinformatics predictions. Results: There were 40 active and 465 potential genes from the TCMSP database. Key active chemicals, namely Quercetin, Kaempferol, Luteolin, and Tanshinone IIA, and 176 targets were deemed as targets of FZKA against NSCLC by PPI network analysis. GO and KEGG enrichment analyses suggest that FZKA acts primarily through the PI3K-AKT and MAPK signaling pathways in the treatment of NSCLC. Moreover, cellular assays showed that Quercetin, Kaempferol, Luteolin, and Tanshinone IIA not only reduced the viability of A549 cells and promoted apoptosis but also significantly decreased the p-AKT/AKT and p-ERK1/2/ERK1/2 ratios. Conclusion: Our data suggested that FZKA can be involved in the treatment of NSCLC through multiple components, targets and pathways.

Funder

Hospital level project of Xi 'an International Medical Center

Publisher

Bentham Science Publishers Ltd.

Subject

Biochemistry,General Medicine,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3