Electrocardiogram Fiducial Points Detection and Estimation Methodology for Automatic Diagnose

Author:

Yáñez de la Rivera René,Soto-Bajo Moisés,Fraguela-Collar Andrés

Abstract

Background:The estimation of fiducial points is specially important in the analysis and automatic diagnose of Electrocardiographic (ECG) signals.Objective:A new algorithm which could be easily implemented is presented to accomplish this task.Methods:Its methodology is rather simple, and starts from some ideas available in the literature combined with new approachs provided by the authors. First, aQRScomplex detection algorithm is presented based on the computation of energy maxima in ECG signals which allow the measurement of cardiac frequency (in beats per minute) and the estimation of R peaks temporal positions (in number of samples). From these ones, an estimation of fiducial points Q, S, J, P and T waves onset and offset points are worked out, supported in a simple modified slope method with constraints.The location process of fiducial points is assisted with the help of the so called curvature filters, which allow to improve the accuracy in this task.Results:The procedure is simulated in Matlab and GNU Octave by using test signals from the MIT medical database, Cardiosim II equipment patterns and synthetic signals developed by the authors.Conclusion:One of the novelties of this work is the global strategy. Also, another significant innovation is the introduction of the curvature filters. We think this concept will prove to be a useful tool in signal processing, not only in ECG analysis.

Publisher

Bentham Science Publishers Ltd.

Subject

Health Informatics,Biomedical Engineering,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3