Effects of p-Hydroxybenzaldehyde, Vanillin, and Syringaldehyde on Protein Tyrosine Phosphatase 1B Activity

Author:

Mohammed Aminu1ORCID,Peter Joy Atule1,Olatunde Ahmed12,Aminu Suleiman1,Umar Ismaila Alhaji1

Affiliation:

1. Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria

2. Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria

Abstract

Background: The PTP 1B is a negative regulator of insulin signal transduction and hence, serves as a therapeutic target in the treatment of diabetes. Objective: The present study investigated the inhibitory effects of p-hydroxybenzaldehyde, vanillin, and syringaldehyde on the activity of protein tyrosine phosphatases phosphatase 1B (PTP 1B) in vitro. Method: The PTP 1B inhibitory assay and mode of inhibition of the three compounds were determined using p-nitrophenyl phosphate (p-NPP) in a 96 well microplate. Molecular docking was used to predict the binding affinities of the compounds with the PTP 1B. Results: The results showed that syringaldehyde exhibited significantly (p< 0.05) higher PTP 1B inhibitory activity (IC50: 12.75 µM) compared to p-hydroxybenzaldehyde (IC50: 33.79 µM) and vanillin (IC50: 42.82 µM) as well as the standards suramin (IC50: 28.35 µM) and ursolic acid (IC50: 19.45 µM). Syringaldehyde and vanillin showed uncompetitive inhibition whereas, p-hydroxybenzaldehyde showed a mixed inhibition type. The molecular docking simulation predicted negative binding energies of -5.0 kcal/mol, -5.5 kcal/mol, and -5.5 kcal/mol for p-hydroxybenzaldehyde, vanillin, and syringaldehyde respectively. Conclusion: Syringaldehyde showed higher inhibition of PTP 1B compared to other phenolic aldehydes and could be the mechanism of its antidiabetic activity. Hence, further studies are warranted to confirm the efficacy and toxicity of the compound

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3