An in silico Approach Towards Crop Improvement by ACC Synthase Inhibition Declining Ethylene Production

Author:

Ali Jasarat,Mishra Rupesh K.,Gupta Chhedi L.,Sharma Dinesh C.,Bajpai Preeti,Pathak Neelam1

Affiliation:

1. Department of Biosciences, Integral University, Lucknow-226026,, India

Abstract

Introduction: The increased level of ethylene inhibits root elongation and causes physiological damage, thereby reduces ethylene level imparts a positive support against various biotic and abiotic stresses viz. phytopathogens, extreme temperatures, hyper salinity, flooding, drought, metal/organic contaminants and insect predation. The metabolic pathways showed the involvement of ACC synthase inhibition for ethylene suppression in plants. Objective: The primary objective of this study focused towards the use of In-silico approach to assess the inhibitory effect of S-adenosyl methionine (SAM) analogue on ACC synthase activity. Methods: The 3D structure of ACC synthase of Pisum sativum was constructed using modeler 9v11 software. The reliability of developed model was evaluated by PROCHECK, ERRAT and ProSA web servers. Furthermore the molecular interactions between substrate SAM and inhibitors were performed. Result: The docking study demonstrated that the binding energy of the substrate SAM is -5.37 Kcal/mol. The SAM analogue (Inhibitors) considered in this study were 3-dzSAHC, SAHC, sinefungin, SIBA, 7-dz-SIBA, 1-dz-SIBA,3-dz-SIBA and S-n-Butyladenosine. Among these analogues, 7-dz-SIBA was found to be most effective on ACC synthase as inhibitor due to lowest binding energy (- 5.51Kcal/mol) and strong Ki value (91.74M). The LYS276 amino acid residue of ACC synthase was observed in the interaction with both substrates SAM and 7-dz-SIBA (S-isobutyl-7-deazaadenosine) demonstrates as most crucial catalytic residue for molecular interaction. Conclusion: This study successfully screened most potent inhibitor for ACC synthase which have indicated the compounds 7-dz- SIBA as effective inhibitor with lowest binding energy, better hydrogen bond interaction and strong inhibition constant compared to others compounds studied. Thus 7-dz-SIBA can be projected to use as a growth enhancer for overall crop improvement. It may help in plant growth promotion, prevents the plants from various environmental stress and phytopathogenic infections etc.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3