Comparative Transcriptome Analysis of Flower Senescence of Camellia lutchuensis

Author:

Liu Weixin1,Yin Hengfu1,Feng Yi1,Yu Suhang1,Fan Zhengqi1,Li Xinlei1,Li Jiyuan1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China | Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China

Abstract

Background: Background: Flower senescence is the last stage of flower development and affects the ornamental and economic value of flower plants. There is still less known on flower senescence of the ornamental plant Camellia lutchuensis, a precious species of Camellia with significant commercial application value. Methods: Methods: Transcriptome sequencing was used to investigate the : By Illumina HiSeq sequencing, we generated approximately 101.16 Gb clean data and 46649 differentially expressed unigenes. Based on the different expression pattern, differentially expressed unigenes were classified into 10 Sub Class. And Sub Class 9, included 8252 unigenes, was highly expressed in the flower senescent stage, suggesting it had a potential regulatory relationship of flower senescence. First, we found that ethylene biosynthesis genes ACSs, ACOs, receptor ETR genes and signaling genes EINs, ERFs all upregulated during flower senescence, suggesting ethylene might play a key role in flower senescence of C. lutchuensis. Furthermore, reactive oxygen species (ROS) production related genes peroxidase (POD), lipase (LIP), polyphenoloxidase (PPO), and ROS scavenging related genes glutathione S-transferase (GST), glutathione reductase (GR) and superoxide dismutase (SOD) were induced in senescent stage, suggesting ROS might be involved in the flower senescence. Besides, the expression of monoterpenoid and isoflavonoid biosynthesis genes, transcription factors (WRKY, NAC, MYB and C2H2), senescence-associated gene SAG20 also were increased during flower senescence. Conclusion: Conclusion: In C. lutchuensis, ethylene pathway might be the key to regulate flower senescence, and ROS signal might play a role in the flower senescence.

Funder

National Key R&D Program of China

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3