Poly(rC) Binding Protein 1 Represses the Translation of STAT3 through 5' UTR

Author:

Jia Rong1,Li Ziwei1,Wang Xiaole1

Affiliation:

1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China

Abstract

Background: Signal transducer and activator of transcription 3 (STAT3) is an oncogene and frequently overexpressed in cancers. However, the regulatory mechanisms of STAT3 expression are not fully understood. Poly(rC)-binding protein1 (PCBP1) is an RNA-binding protein that regulates mRNA stability, splicing, and translation. PCBP1 is a tumor suppressor and can inhibit the translation of several oncogenic genes. Objective: We aimed to understand the regulatory mechanisms of STAT3 expression. Methods: The 5' UTR or 3’ UTR regions of the human STAT3 gene were inserted upstream or downstream of the green fluorescent gene (GFP), respectively, which were used as reporter systems to analyze the inhibitory effects of PCBP1 on the STAT3 gene expression. The deletion and point mutation in 5' UTR were used to search the essential regulatory sequences of the translation inhibition. The mutations of PCBP1 protein were analyzed in the cBioPortal online service. The effects of mutated PCBP1 proteins on STAT3 expression, cancer cell proliferation, and colony formation were analyzed in oral squamous cell carcinoma (OSCC) cell lines. Results: PCBP1 inhibits mRNA translation through a motif in the 5' UTR of STAT3. Moreover, we found two leucine residues (Leu100 and Leu102) of PCBP1 protein frequently mutated in cancers. These mutations abolished the inhibition function of PCBP1 on STAT3 translation. Surprisingly, in contrast to wild-type PCBP1 protein, these mutations can promote the growth and colony formation of cancer cells. Conclusion: Overall, we demonstrate that PCBP1 can inhibit the expression of STAT3 through its 5' UTR, and two leucine residues of PCBP1 protein are essential for its functions.

Funder

Health Commission of Hubei Province

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3