Reversal of Neuropsychiatric Comorbidities in Animal Model of Temporal Lobe Epilepsy Following Systemic Administration of Dental Pulp Stem Cells and Bone Marrow Mesenchymal stem cells

Author:

Dhanushkodi Anandh1,Senthilkumar Sivapriya1,Maiya Krishnamoorthi1,Jain Nishta Kusum1,Sundeep Mata1,Mangaonkar Snehal1,Prabhu Prajnya1,Rai Kiranmai S2,Kutty Bindu M3

Affiliation:

1. Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India

2. Dept. of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India

3. Dept. of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India

Abstract

Introduction: We aim to investigate whether timed systemic administration of dental pulp stem cells (DPSCs) or bone marrow mesenchymal stem cells (BM-MSCs) with status epilepticus (SE) induced blood-brain barrier (BBB) damage could facilitate the CNS homing of DPSCs/BM-MSCs and mitigate neurodegeneration, neuroinflammation and neuropsychiatric comorbidities in animal model of Temporal Lobe epilepsy (TLE). Background: Cognitive impairments, altered emotional responsiveness, depression, and anxiety are the common neuropsychiatric co-morbidities observed in TLE patients. Mesenchymal stem cells (MSCs) transplantation has gained immense attention in treating TLE as ~30% of patients do not respond to anti-epileptic drugs. While MSCs are known to cross the BBB, better CNS homing and therapeutic effects could be achieved when the systemic administration of MSC is timed with BBB damage following SE. Objectives: The objectives of the present study are to investigate the effects of systemic administration of DPSCs/BM-MSCs timed with BBB damage on CNS homing of DPSCs/BM-MSCs, neurodegeneration, neuroinflammation and neuropsychiatric comorbidities in animal model of TLE. Methodology: We first assessed the BBB leakage following kainic acid-induced SE and timed the intravenous administration of DPSCs/BM-MSCs to understand the CNS homing/engraftment potential of DPSCs/BM-MSCs and their potential to mitigate neurodegeneration, neuroinflammation and neuropsychiatric comorbidities. Results: Our results revealed that systemic administration of DPSCs/BM-MSCs attenuates neurodegeneration, neuroinflammation, and ameliorated neuropsychiatric comorbidities. Three months following intravenous administration of DPSCs/BM-MSCs, we observed a negligible number of engrafted cells in the corpus callosum, sub-granular zone, and sub-ventricular zone. Conclusion: Thus, it is evident that functional recovery is still achievable despite poor engraftment of MSCs into CNS following systemic administration.

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3