Enhancing Drug-Target Binding Affinity Prediction through Deep Learning and Protein Secondary Structure Integration

Author:

Zhang Runhua1ORCID,Zhu Baozhong1,Jiang Tengsheng2,Cui Zhiming1,Wu Hongjie1

Affiliation:

1. School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China

2. Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China

Abstract

Background: Conventional approaches to drug discovery are often characterized by lengthy and costly processes. To expedite the discovery of new drugs, the integration of artificial intelligence (AI) in predicting drug-target binding affinity (DTA) has emerged as a crucial approach. Despite the proliferation of deep learning methods for DTA prediction, many of these methods primarily concentrate on the amino acid sequence of proteins. Yet, the interactions between drug compounds and targets occur within distinct segments within the protein structures, whereas the primary sequence primarily captures global protein features. Consequently, it falls short of fully elucidating the intricate relationship between drugs and their respective targets. Objective: This study aims to employ advanced deep-learning techniques to forecast DTA while incorporating information about the secondary structure of proteins. Methods: In our research, both the primary sequence of protein and the secondary structure of protein were leveraged for protein representation. While the primary sequence played the role of the overarching feature, the secondary structure was employed as the localized feature. Convolutional neural networks and graph neural networks were utilized to independently model the intricate features of target proteins and drug compounds. This approach enhanced our ability to capture drugtarget interactions more effectively Results: We have introduced a novel method for predicting DTA. In comparison to DeepDTA, our approach demonstrates significant enhancements, achieving a 3.9% increase in the Concordance Index (CI) and a remarkable 34% reduction in Mean Squared Error (MSE) when evaluated on the KIBA dataset. Conclusion: In conclusion, our results unequivocally demonstrate that augmenting DTA prediction with the inclusion of the protein's secondary structure as a localized feature yields significantly improved accuracy compared to relying solely on the primary structure.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3