Targeted Regulation of Osteoblasts and Osteoclasts in Osteosarcoma Patients by CSF3R Receptor Inhibition of Osteolysis Caused by Tumor Inflammation Based on Transcriptional Spectrum Analysis and Drug Library Screening

Author:

Duan Wei1,Chen Yu2,Shan Jinlu3,Li Qian3

Affiliation:

1. Department of Oncology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, 434020, China

2. Department of Radiology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China

3. Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, P.R. China

Abstract

Background: Osteosarcoma (OS) is a common primary malignant bone tumor that mainly occurs in children and adolescents. The use of IL-8 inhibitor compounds has been reported in patents, which can be used to treat and/or prevent osteosarcoma, but the pathogenesis of osteosarcoma remains to be investigated. At present, osteoblasts and osteoclasts play an important role in the occurrence and development of OS. However, the relationship between osteoblasts and osteoclasts in the specific participation mechanism and inflammatory response of OS patients has not been further studied. Methods: The transcriptome, clinical data, and other data related to OS were downloaded from the GEO database to analyze them with 200 known inflammatory response genes. We set the screening conditions as p < 0.05 and | log2FC| > 0.50, screened the differentially expressed genes (DEGs) related to OS, tested the correlation coefficient between the OS INF gene and clinical risk, and analyzed the survival prognosis. We further enriched and analyzed the DEGs and inflammatory response genes of OS with GO/KEGG to explore the potential biological function and signal pathway mechanism of OS inflammatory response genes. Moreover, the virtual screening of drug sensitivity of OS based on the FDA drug library was also carried out to explore potential therapeutic drugs targeted to regulate OS osteogenesis and osteoclast inflammation, and finally, the molecular dynamics simulation verification of OS core protein and potential drugs was carried out to explore the binding stability and mechanism between potential drugs and core protein. Results: Through differential analysis of GSE39058, GSE36001, GSE87624, and three other data sets closely related to OS osteoblasts and osteoclasts, we found that there was one upregulated gene (CADM1) and one down-regulated gene (PHF15) related to OS. In addition, GSEA enrichment analysis of the DEGs of OS showed that it was mainly involved in the progress of OS through biological functions, such as oxidative photosynthesis, acute junction, and epithelial-mesenchymal transition. The enrichment analysis of OS DEGs revealed that they mainly affect the occurrence and progress of OS by participating in the regulation of the actin skeleton, PI3K Akt signal pathway, complement and coagulation cascade. According to the expression of CSF3R in OS patients, a risk coefficient model and a diagnostic model were established. It was found that the more significant the difference in the CSF3R gene in OS patients, the greater the risk coefficient of disease (p < 0.05). The AUC under the curve of the CSF3R gene was greater than 0.65, which had a good diagnostic significance for OS. The above results showed that the prognosis risk gene CSF3R related to OS inflammation was closely related to the survival status of OS patients. Finally, through the virtual screening of the ZINC drug library and molecular dynamics simulation, it was found that the docking model formed by the core protein CSF3R and the compounds, Leucovorin and Methotrexate, were the most stable, which revealed that the compounds Leucovorin and Methotrexate might play a role in the treatment of OS by combining with the inflammatory response related factor CSF3R of OS. Conclusion: CSF3R participates in the occurrence and development of OS bone destruction by regulating the inflammatory response of osteoblasts and osteoclasts and can affect the survival prognosis of OS patients.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3