Optimizing Performance of Worst Case User in Ultra-dense Networks Utilizing Deep Q-learning

Author:

Lam Sinh Cong1,Tran Duc Tan2

Affiliation:

1. Faculty of Electronics and Telecommunications, University of Engineering and Technology, Vietnam National University of Science, Ha Noi, Vietnam

2. Faculty of Electrical and Electronic Engineering, Phenikaa University, Hanoi, Vietnam

Abstract

Abstract: This paper defines, analyzes, and improves the performance of the worst-case user in ultradense networks Background: In Ultra-Dense Networks (UDNs), where the Base Stations are distributed with a very high density, the users are possibly near the cells’ intersection. These users are called the Worst-Case Users (WCU) and usually experience very low performance. Objectives: Thus, improving the WCU performance is an urgent problem to secure the service requirement of future cellular networks. Methods: In this paper, the performance of the WCU is analyzed in UDNs with a maximum power algorithm and under the wireless environment with Stretched Path Loss model and Rayleigh fading. To improve the WCU data rate, the Deep Q Networks with and without Multi-Input-Multi-output (MIMO) are utilized in this paper. Results: The simulation results show that a system–based Deep Q Learning can dramatically improve the WCU performance compared to the system with the maximum power algorithm. In addition, the deployment of the MIMO technique in a system–based Deep Q-learning only has benefits in bad channel conditions. Conclusion: In any channel condition, utilization of Deep Q Learning is a suitable solution to improve the WCU performance. Furthermore, if the user experiences a good channel condition, the MIMO technique can be used with Deep Q Learning to obtain further performance improvement.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3